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Abstract—Phonograph record is an analog sound storage
medium that has played an important part in sound history.
Modulated spiral groves on the disc are usually inevitably dam-
aged by scratches and dust, which lead to noises with different
statistical characteristics. Among those different type of noises,
there is one common click-shape noise that have some degree
of correlation between channels. Its origins have been explained
as a deviation of the probe needle means it shifts closer to one
wall but further from another with similar distances. Our aim
is to restore this type of noises on dual mono audio signals with
a statistical method. There are previous researches on restoring
single-channel noisy data based on generative models. However
multi-channel noisy data contain more audio information than
single-channel data, due to its channel correlation. To exploit
this property, we propose multivariate Gaussian models for
both signal and noise models. Then we derive the Maximum A
Posteriori (MAP) estimation of the underlying data. Additionally,
we also use the Maximum Likelihood method to optimize model
parameters. In the end we compare the restoration performances
between our model and the baseline model on both synthetic and
real-life noisy music data.

Index Terms—Multi-channel audio siganl, dual mono audio,
signal restoration, multivariate Gaussian, Maximum A Posterior,
Maximum Likelihood

I. INTRODUCTION

The music signals are considered as time-series sequences,
with sampling frequency at 44.1kHz. We treated the noisy
signals as a sum of noise-free music signals and additive
noises in the following way, which means we could model
them separately.

yt = xt + itnt. (1)

In Equation 1, yt is a single data point of the noisy signal at
time t and for dual mono signals it has form yt = [ylt yrt]

T ,
where subscript l and r stand for left and right channels . xt

is for the underlying noise-free signal and nt is for multi-
channel noises. They have same shapes with yt. For xt, the
dual mono has suggested that both channels have the same
values. it is a flag which is 1 when this data point is considered
as corrupted and 0 when it is believed as noise-free. When it
is 0, yt = xt, which means we believed we have clean and
uncorrupted data for this time t. Therefore, for a piece of raw
signals, data that are considered as noisy are all labelled out. In
[1], it has proposed a MAP missing data interpolation method
dealing with single-channel noisy data, which means it treated
all yt, xt and nt as 1 dimensional variables. Study in [2]
proposes another interpolation method for multi-channel noisy
data based on auto-regression model, but it treats the corrupted

data as completely missing, so not using noisy information
at all. We take the [1] as a baseline model. The baseline
model uses uni-variate Gaussian models for both xt and nt. It
cannot exploit information from the extra channel. We extend
the baseline models, so that xt and nt are treated as random
Gaussian vectors.

II. METHOD

We first use multivariate Gaussian random vectors to model
the music signals and the multi-channel noises separately.
Then we derive a MAP estimation of the underlying data xu

and a ML estimation of the noises parameters. In Section II-D,
we use an iterative algorithm to repeatedly update estimated
noise parameters and underlying audio data. It converges after
a few iterations and best performance is achieved. show how
to apply this method.

A. Signal Modelling

We use short music signal pieces with length N = 5000
data points, which is equivalent to duration of approximately
0.1s, therefore we can assume this short piece is wide sense
stationary. For one piece of the underlying signal, we treat it
as a joint Gaussian distribution, which is a common model for
audio data. It could be expressed in the following vector-form
equations:

P (x) = N
(
x | 0,Rx

)
=

1

(2π)N/2|Rx|1/2
exp

(
− 1

2
xTRx

−1x
)
,

where x ∈ RN is the signal vector. As aforementioned, only
a fraction of data points in x are considered as corrupted.
Therefore, we partition x into corrupted data points xu ∈ RM

which is unknown, and all noise-free data points xk ∈ RN−M

which is known. The posterior probability distribution of xu

given xk can be expressed as follows:

P (xu|xk) =
P (x)

P (xk)

=
P (Uxu + Kxk)

P (xk)
, (2)

where U ∈ RN×M and K ∈ RN×(N−M) are two partition
matrix, which map xu and xk into x. Therefore, the MAP
estimation of xu can be derived by maximizing Equation 2
w.r.t. xu:

978-1-7281-7202-6/20/$31.00 ©2020 Crown
Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 05,2024 at 00:00:45 UTC from IEEE Xplore.  Restrictions apply. 



xMAP
u = −M−1

u Mkxk,

where matrix Mu ∈ RM×M and Mk ∈ RM×(N−M) and they
can be interpreted as the selections of elements in Rx that
corresponding to xu and xk:

Mu = UTR−1x U,

Mk = UTR−1x K.

B. Multi-channel Noises modelling

As aforementioned, for the noise at a single time point nt,
we consider it is from two channels, thus the dimension is
2. We model it as a zero mean multivariate Gaussian random
vector. Therefore it has probability distribution as follow:

P (nt) = P
(
yt | xt;Σt

)
= N

(
0,Σt

)
, (3)

where the co-variance matrix Σt ∈ R2×2, that has the follow-
ing structure with 3 parameters σlt, σrt and ρt controlling its
characteristics.

Σt =

[
σ2
lt ρtσltσrt

ρtσltσrt σ2
rt

]
. (4)

We would like to consider noises for all corrupted data
points in a music piece together, whose number is M . There-
fore, we stack nt, for all t that the noise flag it = 1, into a
vector nlr ∈ R2×M . In a similar method, we also stack yt and
xt, for all t, into vectors ylr and xlr, both ∈ R2×N . The three
stacked vectors nlr, ylr and xlr are still multivariate Gaussian
random vectors.

nlr = [...nlt1 nrt1 nlt2 nrt2 nlt3 nrt3 ...]
T ,

ylr = [yl1 yr1 yl2 yr2 yl3 yr3 ...]
T ,

xlr = [xu1 xu1 xu2 xu2 xu3 xu3 ...]
T

where t1, t2, t3... satisfy it = 1 and 1, 2, 3, ... are all time
points in a music piece. The three vectors have the relation
that nlr = ylr − xlr. Then we define a mapping matrix N ∈
R2M×M , so that xlr = Nxu:

N =


1
1

1
1

...

 .
Similar to Equation 3, the p.d.f of the noise vector nlr is also

a multivariate Gaussian distribution, which can be expressed
as follow:

P (nlr;Cm) = P (ylr|xlr;Cm) = N (ylr|xlr;Cm).

Theoretically, the co-variance matrix Cm ∈ R2M×2M can
have any arbitrary symmetric structure. However, for the
purpose of later simplifying estimation of the co-variance
matrix, we make some assumptions on its structure, which
will be discussed in details in Section 4. Now the posteriori

probability (Equation 2) of xu can be re-written, which now
also conditions on double channel noisy data ylr.

P
(
xu | xk,ylr;Cm

)
=

P
(
x,ylr;Cm

)
P
(
xk,ylr;Cm

)
=
P
(
x
)
P
(
nlr;Cm

)
P
(
xk,ylr;Cm

) .
Given the relation between ylr and nlr, it is easy to show

that P (x,ylr) = P (x,nlr). The underlying music data x and
the noise nlr are independent. The denominator evidence is a
constant. Therefore, the MAP estimation of the corrupted data
xu can be derived by maximizing the nominator w.r.t. xu:

xMAP
u =

(
Mu + NTCm

−1N
)−1(

NTCm
−1ylr −Mkxk

)
.

(5)

C. Noises parameters estimation

The MAP interpolation Equation 5 requires the co-variance
matrix Cm to compute the corrupted data estimation. Cm

is a matrix describing characteristics of the noises and it is
usually unknown. Therefore, we propose a Maximum Like-
lihood estimation method to estimate its value using the raw
data x. As aforementioned, Cm can have arbitrary symmetric
structure. However, we apply a few assumptions to simplify
the estimation process. We assume that the random vector nt is
i.i.d. This implies two things: firstly, the noises are temporarily
uncorrelated, which means there is no correlation between nt1

and nt2 if t1 6= t2. Additionally, nt1 and nt2 have the same co-
variance matrix Σt for any t. Therefore, the resulting structure
of Cm can be expressed as:

Cm =


Σ

Σ
Σ

...

 . (6)

As shown in Equation 4, Σ contains three parameters σl, σr
and ρ, so does Cm. Therefore, we maximize the likelihood
of Cm with respect to these parameters respectively. The log-
likelihood distribution can be expressed as the marginalization
of joint distribution of raw data ylr and xk and unknown
underlying clean data xu.

L = log
(
P (ylr|Cm;Rx),

)
= log

(∫
P (ylr,xk,xu|Cm;Rx) dxu

)
= log

(∫
P (ylr|xu,Cm)P (xu,xk;Rx) dxu

)
= log

(∫
N
(
ylr|xlr,Cm

)
N
(
x|0,Rx

)
dxu

)
.

We expand the product of two Gaussian and complete the
square to construct a new Gaussian p.d.f of xu: N (xu|µ,C),
which can then be marginalized to 1. By dropping constant
terms, the log-likelihood ends up with Equation 7:
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L = log

{
|C| 12

(2π)
m+n

2 |Cm|
1
2 |Rx|

1
2

exp
[
− 1

2

(
yT
lrCm

−1ylr

+ xT
k KTRx

−1Kxk − µTC−1µ
)] ∫

N (xu|µ,C)dxu

}
≈ 1

2
log(|C|)− 1

2
log(|Cm|)−

1

2
log(|Rx|)

− 1

2
(yT

lrCm
−1ylr + xT

k KTRx
−1Kxk − µTC−1µ). (7)

The µ ∈ RM and C ∈ RM×M have following expressions:

C = (N
T
Cm

−1N + UTRx
−1U)−1,

µ = C(N
T
Cm

−1ylr −UTRx
−1Kxk).

The ML estimation of Cm is obtained by maximizing
Equation 7 with respect to σl, σr and ρ. Although it is hard
to find an analytical solution, there are numbers of numerous
optimization methods available, ranging from gradient based
methods to searching methods [3]. Here we consider a gradient
descent method. Scalar a is used to represent the optimization
variables, which are σl, σr and ρ.

an+1 = an − λa
∂L
∂an

, n ≥ 0.

We need to use following identities, as shown in [4], to help
with the derivation of the gradients:

∂ ln |M|
∂x

= Tr
(
M−1 ∂M

∂x

)
,

∂M−1

∂x
= −M−1 ∂M

∂x
M−1.

Then the gradient can be expressed as follow:
∂L
∂a

=
1

2
Tr
(
C−1

∂C

∂a

)
− 1

2
Tr
(
Cm

−1 ∂Cm

∂a

)
+

1

2
yT
lrCm

−1 ∂Cm

∂a
Cm

−1ylr

− 1

2
µTNTCm

−1 ∂Cm

∂a
Cm

−1Nµ+ µTNTCm
−1 ∂Cm

∂a
Cm

−1[
NC

(
NTCm

−1ylr −UTRx
−1KXk

)
− ylr

]
, (8)

where

∂C

∂a
= CNTCm

−1 ∂Cm

∂a
NC.

∂Cm

∂a has different formulas for different parameter a. They
are shown below:

∂Cm

∂σl
=

[
2σ1 ρσr
ρσr 0

]
,

∂Cm

∂σr
=

[
0 ρσl
ρσl 2σl

]
,

∂Cm

∂ρ
=

[
0 σlσr

σlσr 0

]
.

To further improve the parameters estimation results, we
can iteratively run the estimation process and use the newly

estimated parameters to interpolate the corrupted signals. Then
use the restored signals as the input of the next round param-
eter estimation. By this way, we can progressively achieve
better estimation of the model parameters and therefore more
accurate restored signals.

D. Complete iterative restoration algorithm

The detailed formulas for MAP estimation of xu and ML
estimation of Cm have been shown in Section II-B and II-C.
The algorithm for the complete restoration process is shown
in Algorithm 1. The first iteration uses the estimated xu to
recalculate Rx and Cm iteratively. This is because in the first
place, we used noisy signal x to compute the two characteristic
matrix, thus their values were inevitably noisy. By doing
iterative restoration, each time we can have less noisy Rx and
Cm and therefore better estimation of x. The second iteration
is a simple gradient descent method to find the optimized
values for noise parameters.

Algorithm 1 Complete iterative restoration algorithm
1: x0

u ← Initialized to random values
2: for i ∈ {1, 2, ..., iter1} do . First iteration.
3: Rx = cov[xixiT ]
4: for j ∈ {1, 2, ..., iter2} do . Second iteration.
5: for a ∈ {σl, σr, ρ} do
6: aj ← aj − λa ∂L

∂aj . ∂L
∂aj is given by Equation

8
7: end for
8: end for
9: σi

l , σ
i
r, ρi ← Optimized by Gradient Descent.

10: Cm
i ← Computed by Equation 4, 6 , using σi

l , σ
i
r,

ρi.
11: xi

u ← Computed by Equation 5, using Cm
i.

12: xi ← Uxi
u + Kxk

13: end for

III. EXPERIMENT AND PERFORMANCE

We compare restoration performance of our interpolator
with the baseline method over 100 pieces of both synthetic
and real noisy data with duration of 0.1s. For the synthetic
data, we generated the noise according to Equation 3 and
superimposed it to clean music pieces. For the real world
noise, we recorded lead-in part of damaged vinyl discs and
superimposed them to clean music pieces. To evaluate the
performances quantitatively, we compared the average R.M.S
errors of the restored signals by our method and the baseline
uni-variate Gaussian model.

TABLE I
AVERAGE R.M.S ERRORS OVER 100 MUSIC PIECES.

Synthetic data Real data
Proposed method 0.06 0.36
Baseline model 0.10 0.43
Noisy data 3.86 4.52
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As shown in Tab. I, the unprocessed noisy data have r.m.s.
errors 3.86 and 4.52 for synthetic and real data. The baseline
uni-variate Gaussian model can reach 0.10 and 0.43, while
our proposed method using double-channel data achieved
0.06 and 0.36 for synthetic and real data respectively. The
discrepancy between the performance on synthetic and real
data is because the real-world signals are always composed
of various type of noises with different characteristics.
From the noisy data examples in Fig. 1 and Fig. 2, we can
visually show that our method have better performance as the
interpolated waveform is closer to the underlying signals.

Fig. 1. Waveform comparison for synthetic noisy data.

Fig. 2. Waveform comparison for real noisy data.

We also investigate the restoration performance with differ-
ent noise parameters, which are noise variance σ and channel
correlation coefficient ρ. Additional to our method and the
baseline model, we also compare the results with a naive MAP
estimation that completely ignore the noisy part of the data,
which is labelled as ’No noise’ in Fig.3 and Fig.4. We used
synthetic noisy data with controlled noise parameters. Each
data point in Fig. 3 and Fig.4 is the average r.m.s errors over
20 music pieces with duration 0.1s.

Fig. 3. Comparison of r.m.s errors against σ with a controlled ρ.

Fig. 4. Comparison of r.m.s errors against ρ with a controlled σ.

In Fig.3, the r.m.s errors are shown against the noise
variance σ (Here we use the same value for both channels,
σl = σr), while the value of ρ is controlled as −0.3. As
shown in graph, the restoration performance gets worse for
both methods as the σ increases. When σ ≤ 8, our proposed
method can produce constantly better result than the baseline
model. However, when σ > 8, as the noises have too high
amplitudes than the underlying signals, all methods cannot
achieve good restoration performances.

In Fig.4, the r.m.s errors are shown against the noise
correlation ρ, while σ is kept as 3. As shown, our model can
achieve better performance for noises with strong correlation,
which means we successfully take advantage of the multi-
channel information. When ρ is close to −1, we can restore
with almost zero estimation errors, because there is nearly
complete information to exploit from two channel noises.
When ρ is close 0 side, we still have better performance than
the baseline methods, which can be supported by the theory
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that two independent noisy channels could still provide more
information.

IV. CONCLUSION

There has been previous research on restoring single-
channel noisy audio data using Gaussian model. However,
dual mono audio is also common in many sound systems and
contains extra information that can be exploited by a multi-
channel model. In this paper, we used multi-variate Gaussians
to model the double-channel noises and the underlying mu-
sic signals separately. Based on this, we derived the MAP
estimation of the corrupted underlying music signals. Then
we also derived the ML estimation of the parameters of the
noise model. The r.m.s restoration errors of our model and the
baseline model have been compared and it showed that double-
channel restoration model has generally better performances,
especially when there are strong correlation between noises
from two channels.
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